Exercise 3

Use the successive approximations method to solve the following Volterra integral equations:

$$
u(x)=\frac{1}{6} x^{3}-\int_{0}^{x}(x-t) u(t) d t
$$

Solution

The successive approximations method, also known as the method of Picard iteration, will be used to solve the integral equation. Consider the iteration scheme,

$$
u_{n+1}(x)=\frac{1}{6} x^{3}-\int_{0}^{x}(x-t) u_{n}(t) d t, \quad n \geq 0
$$

choosing $u_{0}(x)=0$. Then

$$
\begin{aligned}
u_{1}(x) & =\frac{1}{6} x^{3}-\int_{0}^{x}(x-t) u_{0}(t) d t=\frac{1}{6} x^{3} \\
u_{2}(x) & =\frac{1}{6} x^{3}-\int_{0}^{x}(x-t) u_{1}(t) d t=\frac{1}{6} x^{3}-\frac{1}{120} x^{5} \\
u_{3}(x) & =\frac{1}{6} x^{3}-\int_{0}^{x}(x-t) u_{2}(t) d t=\frac{1}{6} x^{3}-\frac{1}{120} x^{5}+\frac{1}{5040} x^{7} \\
u_{4}(x) & =\frac{1}{6} x^{3}-\int_{0}^{x}(x-t) u_{3}(t) d t=\frac{1}{6} x^{3}-\frac{1}{120} x^{5}+\frac{1}{5040} x^{7}-\frac{1}{362880} x^{9} \\
& \vdots
\end{aligned}
$$

and the general formula for $u_{n+1}(x)$ is

$$
u_{n+1}(x)=\sum_{k=1}^{n+1} \frac{(-1)^{k+1}}{(2 k+1)!} x^{2 k+1} .
$$

Take the limit as $n \rightarrow \infty$ to determine $u(x)$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} u_{n+1}(x) & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n+1} \frac{(-1)^{k+1}}{(2 k+1)!} x^{2 k+1} \\
& =\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{(2 k+1)!} x^{2 k+1} \\
& =-\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1} \\
& =x-\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1} \\
& =x-\sin x
\end{aligned}
$$

Therefore, $u(x)=x-\sin x$.

